Inhibition of microsomal prostaglandin E synthase-1 (mPGES-1) by GS-248 reduces prostaglandin E₂ biosynthesis while increasing prostacyclin in human subjects

Charlotte Edenius*^{1, 2}, Gunilla Ekström^{1, 3}, Johan Kolmert³, Ralf Morgenstern^{1, 3}, Patric Stenberg^{1, 3}, Per-Johan Jakobsson^{1, 4, 5}, Göran Tornling^{1, 6}

¹ Gesynta Pharma, Stockholm, Sweden, ² Karolinska Institutet, Department of Medicine Solna, Stockholm, Sweden, ³ Karolinska Institutet, The Institute of Environmental Medicine, Stockholm, Sweden, ⁴ Karolinska Institutet, Department of Medicine Solna, Respiratory Unit, Stockholm, Sweden, ⁶ Karolinska Institutet, Department of Medicine Solna, Respiratory Unit, Stockholm, Sweden

Background

Microsomal prostaglandin E synthase-1 (mPGES-1) catalyzes the formation of prostaglandin (PG) E_2 from cyclooxygenase derived PGH₂(^{1,2}).

Inhibition of mPGES-1 reduces the pro-inflammatory PGE₂, while concomitantly increasing vasoprotective prostacyclin (PGI₂) via shunting of PGH₂^{3,4} (**Figure 1**).

Therefore, administration of mPGES-1 inhibitors leads to both anti-inflammatory effects in animal models and relaxation of human arteries^{4,5}.

The prostaglandin profile and pharmacological effects observed following mPGES-1 inhibition, suggest use of such agents for treating inflammatory diseases with concomitant vasculopathies.

$\label{eq:GS-248} \textbf{GS-248} - \textbf{potent} \ \textbf{and} \ \textbf{selective} \ \textbf{inhibitor} \ \textbf{of} \ \textbf{mPGES-1} \ \textbf{ex-hibiting} \ \textbf{sub-nanomolar} \ \textbf{IC}_{50} \ \textbf{in human whole blood}$

Figure 1. Arachidonic acid cascade

Objective

To evaluate safety, tolerability, pharmacokinetics and pharmaco-dynamics of GS-248 in a clinical phase I study

Methods/assessments

- Safety and tolerability, and GS-248 levels in plasma
- PGE₂ concentrations in *ex vivo* whole blood after LPS incubation
- Excretion of urinary metabolites PGE_2 (PGEM), PGI_2 (PGIM) and thromboxane (TXM)
- Bioanalytical quantification performed by LC-MS/MS.

Study Design

Subjects: Male and female healthy subjects (18-75 years)

- Design: Double blind, placebo-controlled and randomised 3:1 (active:placebo)
- Dosage: GS-248: 1 300 mg single doses (6 cohorts) 20-180 mg, OD; 10 days (3 cohorts) Celecoxib: 200 mg bid;10 days (8 subjects)

Results

GS-248 administered orally for up to 10 days:

- · was safe and well tolerated
- achieved C_{max} 0.5 2.5 hours after dosing with a terminal half-life supporting once daily dosage
- completely inhibited mPGES-1-mediated PGE₂ synthesis in the *ex vivo* whole blood assay at 24 hours after single doses (Figure 2) with an of IC₅₀ ≤0.5 nmol/L
- resulted in reduced renal excretion of PGEM and increased excretion of PGIM and TXM to similar extent (Figure 3)

Figure 2. Inhibition of PGE_2 production in whole blood collected 24h after single oral doses of GS-248 (n=5-6) or placebo (n=8), (mean and SD)

Figure 3. Change in urinary excretion of prostanoid metabolites after GS-248 or celecoxib treatment for 10 days collected 24 hours post dose (mean and SD)

SAT0315

Conclusions

- The results indicate that GS-248 affects the arachidonic acid metabolism by inhibiting mPGES-1, thereby shunting the substrate, PGH₂, towards the prostacyclin pathway at doses that are safe and well tolerated
- In contrast, celecoxib, which inhibits cyclooxygenase-2, reduce both PGE₂ and prostacyclin production
- Elevated prostacyclin production suggests that GS-248 may have vasoprotective effects in addition to the antiinflammatory and pain-relieving effects expected by reduced PGE₂ production
- The results warrant further evaluation of GS-248 in chronic inflammatory conditions with microvascular disease such as digital ulcers and Raynaud's phenomenon in systemic sclerosis

References:

¹Korotkova M, Jakobsson PJ. 2014;10:229-41; ²Bergqvist F et al. POLM 2019;147:106383; ³Kirkby NS, et al. Cardiovasc Res. 2020; ⁴Ozen G, et al. Br J Pharmacol. 2017;174:4087-98; ⁵Larsson K, et al. Br J Pharmacol. 2019;176:4625-38

E-mail: charlotte.edenius@gesynta.se

